

ORNL is managed by UT-Battelle, LLC

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Bridge to the future for medium and heavy-duty vehicle propulsion

VTO Powertrain Materials Core Program

3 National Labs, 30+ researchers, 4 Thrust Areas, 17 Tasks

THRUST 2. Cost-

Effective,
Higher
Temperature
Alloys
(550 - 1000°C)

THRUST 3.

Additive
Manufacturing
for Advanced
Powertrains

TRL 4

TRL 1

Accelerating Development of Powertrain Alloys

Supported by Adv. Characterization & Computation

\$30M/5 years launched in FY19 Atom Probe
Synchrotron
Microscopy
Neutrons

THRUST 4.

Thermodynamics
Modern Data Analytics

High Performance Computing

RUST 4. ICME

Task 2A2 Overview:

Timeline/Budget

Task start: October 2018

• Task end: September 2023

• Percent complete: 50%

• 2A2 Budget

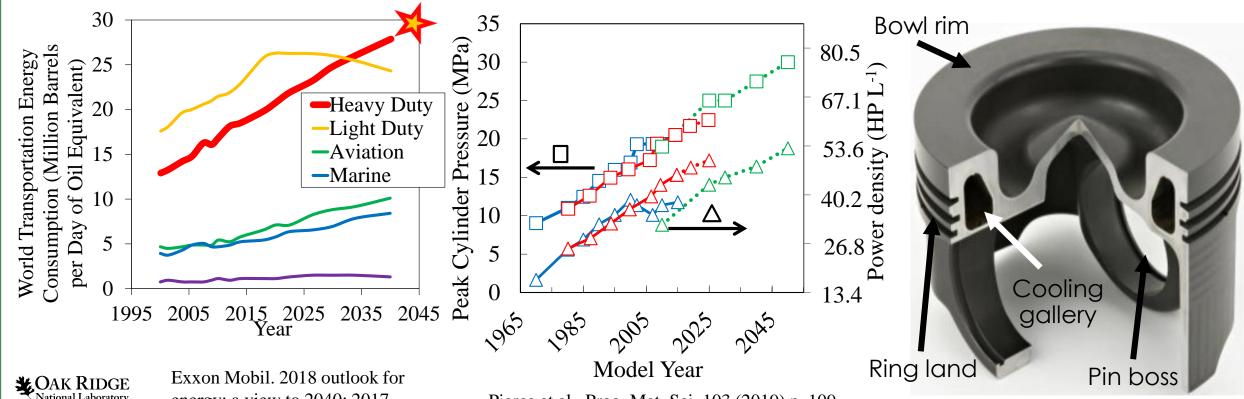
– FY20: \$200k

- FY21: \$200K

Barriers

- Accelerating alloy development time.
- Improving balance of elevated temperature strength, thermal conductivity, oxidation resistance.
- Affordability and manufacturability.

Thrust 2. Cost-Effective, Higher Temperature Alloys


2A. Advanced Affordable Wrought Powertrain Alloys 2B. Affordable, High Performance Cast Powertrain Alloys **TRL FY20 FY21** Title Task \$400k \$400k Oxidation Resistant Valve Alloys Mid **Higher Temperature Heavy-Duty Piston Alloys** \$200k \$200k Low \$175k High Temperature Coatings for Valve Alloys Mid \$160k \$175k High Temperature Oxidation \$175k Low Development of Cast, Higher Temperature \$275k \$305k 2B1 Mid Austenitic Alloys Selective Material Processing to Improve Local Mid \$300k \$300k **Properties PNNL** \$1,225k \$1,540k **Subtotals**

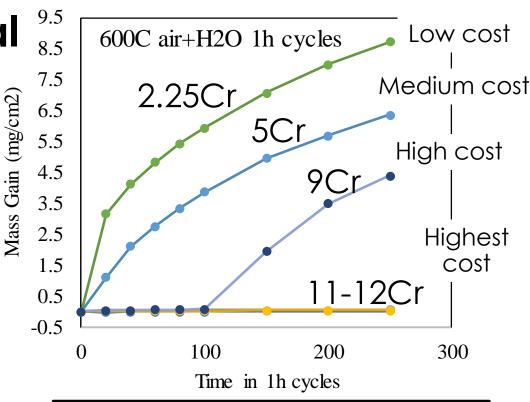
Partners

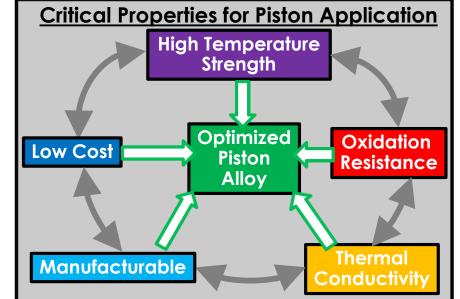
- Program Lead Lab
 - –Oak Ridge National Lab (ORNL)
- Partners
 - -Thrust 4A: Advanced Characterization
 - Argonne National Lab (ANL)
 - -Advanced Photon Source (APS)
- •ARMY Ground Vehicles Systems Center (GVSC), informal

Relevance

- Challenge to electrify heavy duty line haul freight due to battery power density
- Higher cylinder pressures and temperatures = higher efficiency.
- Current heavy duty diesel (HDD) piston steels (4140 & micro alloyed steel (MAS)) not suitable for temperatures $\geq \sim 500^{\circ}$ C (low oxidation & fatigue resistance).
- Objective: develop affordable, innovative, higher temperature piston alloys

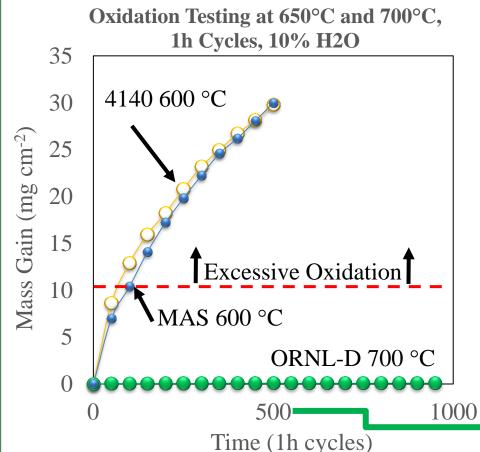
Milestones for Task


2021	Task 2A2: Higher Temperature Heavy-Duty Piston Alloys
Q2	Milestone: Longer term oxidation testing and mechanical testing of optimized low and medium Cr developmental alloys in the aged condition
	Status: COMPLETE , longer term oxidation testing and mechanical testing of ages specimens complete.
Q4	Milestone: Establish industrial partnerships to commercialize new 600-650 °C capable piston materials Status: Continuing to explore potential industrial partnerships.



Investigating Three Developmental Martensitic Steel Concepts


- Evaluate existing, highertemperature commercial steels
 - Two 12Cr martensitic steels (12Cr-A and 12Cr-B)
 - High alloy content = Good performance but high cost
 - 4140 (1Cr-1Mn wt.%)
- Low chromium (Cr) alloys (0-3 wt.%): Lowest cost, high strength, 550-600°C.
- Medium Cr alloys (3-8wt.% Cr): Moderate cost, high strength, good oxidation resistance, 600-650°C
- High Cr (8-15 wt.% Cr): Highest cost and oxidation resistance,650-700°C.



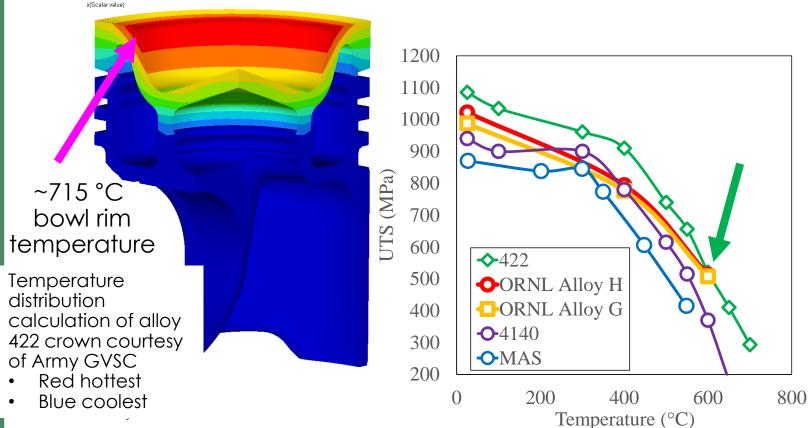
ORNL Low-Cr Developmental Alloys: 100% Increase in Strength at 600 °C and 10% Increase in Thermal Conductivity vs. alloy 4140

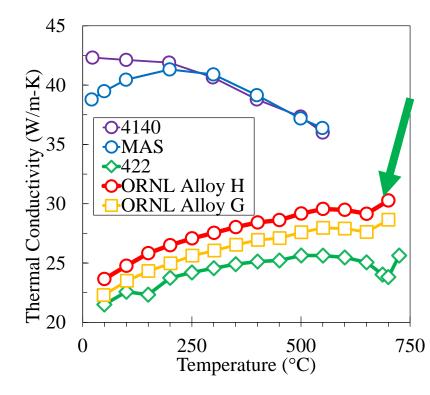
Low-Cost Medium Cr Alloys With Oxidation Resistance to 700 °C

- Commercial piston alloys 4140 and Micro alloyed steel (MAS) oxidation limited to 500 °C
- ORNL developmental alloys exhibit low oxidation mass gain and 200C increase in oxidation limit
- New alloys enable higher temperature, more efficient engine operation

ORNL Alloy

MAS Piston Alloy Oxidation Tested 500h at 600 °C, Excessive Oxide Spallation




ORNL Alloy-D Oxidation Tested 500h at 700 °C, Thin Adherent Oxide

Oak Ridge High Cr Alloys: Breakthrough in Overcoming Strength, Oxidation, and Thermal Conductivity Tradeoff


- ORNL alloys (ORNL-H and –G) show 10-15% increase in thermal conductivity with equivalent 600 °C strength relative to 422.
- Reduces peak temperatures and oil cooling loads (lower parasitic losses)
- High strength and oxidation resistance at bowl rim needed.

ORNL High Cr Alloys H & G Exhibit Improved Longer Term Cyclic Oxidation Resistance to 700°C Over Commercial 12Cr Steels

- Commercial 422 alloy shows break away Fe oxidation formation at 700 C°.
- Exceptional results prompting interest in scaling up

Responses to Previous years Reviewer's comments

- Question: Relevance—Does this project support the overall DOE objectives? Why or why not?
 - Response: Yes, focused on improving efficiency of HD line haul freight vehicles, which is a highly challenging segment to electrify. The EPA is projecting that U.S. freight will double from 2019 to 2040.
- Question: Resources—How sufficient are the resources for the project to achieve the stated milestones in a timely fashion?
 - Response: Resources are optimal for lab scale development. Additional resources will be needed for scale up of material without significant contribution from industry.

Remaining Challenges and Barriers

- Optimizing balance of strength, oxidation resistance, and thermal conductivity.
- Industrial collaboration and scaling up of developmental alloys

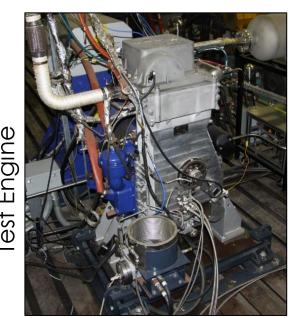
Collaboration and Coordination

Task Partners

- Thrust 4A Advanced Characterization (ORNL)
 - Microstructural
 Characterization via

 Transmission Electron
 Microscopy & Atom Probe
 Tomography

- Ground Vehicles Systems Center (GVSC), US Army
 - Manufacturing Prototype
 Pistons of Commercial Alloys.
 - Working with piston supplier.
 - Working with metals and processing, forging, and heat-treating facilities.



Industrial vacuum furnace showing 12Cr pucks prior to heat treatment for manufacture of protype pistons

Proposed Future Research

- FY22 and beyond:
 - Perform remaining optimization of developmental alloys prior to scale up (6-12 months).
 - Initiate partnerships to scale up material for prototype piston manufacturing with supplier.
 - Identify Electric Vehicle (EV) applications, such as gear trains for electric trucks, where ORNL's capabilities in rapid development of new alloys with targeted property sets can offer high impact.

New Oak Ridge Developmental Alloys Show Improved Properties Relative to Current Commercial Alloys

Commercial Alloy Evaluation

- Evaluated12Cr steels and thermal processing methods relative to current piston steels.
- 12Cr alloys evaluated in this task are being made into prototypes with Army GVSC collaboration.

High Cr Developmental Alloy Evaluation

 Novel alloys with good strength, excellent oxidation resistance to 700 °C, and higher thermal conductivity than commercial 12Cr steels.

Medium Cr Developmental Alloy Evaluation

 Novel alloys with improved strength, similar oxidation resistance, and 20-40% lower material cost relative to 12Cr commercial alloys have been developed

Low Cr Developmental Alloy Evaluation

• Low-cost low-Cr alloys demonstrated with higher strength than commercial 12Cr alloys and good oxidation resistance from 500 to 575°C.

